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Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
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Attention focussing on unexpected commonality.



Scale-free paradigm
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Loglog plot degree sequences Internet Movie Database and Internet

B Straight line: proportion pk of vertices with degree k satisfies
pk = ck−τ .



Small-world paradigm
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Distances in SCC WWW and IMDb in 2003.



Random graphs for
complex networks

B Inhomogeneous random graph:
Vertex set [n] = {1, . . . , n}, edge ij independently present w.p. pij.
Example: Erdős-Rényi model, for which p = λ/n for some λ > 0.

B Configuration model: Vertices in [n] have prescribed degree,
graph constructed by pairing half-edges.

B Preferential attachment model: Growing network, new vertices
more likely to attach to old vertices having high degree.

Models typically are non-spatial and have small clustering.
AIM: construct simple spatial scale-free random graph model.



Inhomogeneous rgs
Norros-Reittu model: Equip each vertex i ∈ [n] = {1, . . . , n} with
random weight Wi, where (Wi)i∈[n] are i.i.d. random variables.

Attach edge with probability pij between vertices i and j, where

pij = 1− e−λWiWj/n.

Different edges are conditionally independent given weights, and
λ > 0 is parameter. Retrieve Erdős-Rényi RG with p = 1− e−λ/n

when Wi ≡ 1.

B Related models:
Chung-Lu model: pij = (WiWj/n) ∧ 1;

Generalized random graph: pij = WiWj/(n + WiWj);

Janson (2010): Conditions for asymptotic equivalence.
Bollobás-Janson-Riordan (2007):
General set-up inhomogeneous random graphs.



Long-range percolation
Consider model on Zd where we attach edge between x, y ∈ Zd
independently with probability

px,y = 1− e−λ/|x−y|
α
.

Degree distribution:
Dx =

∑
y∈Zd

Ix,y,

with Ix,y independent Bernoulli variables with success prob. pxy.

Properties:
B Percolation function continuous when α ∈ (d, 2d) (Berger 02);
B Graph distances polylogarithmic when α ∈ (d, 2d) (Biskup 04);
B Model has high clustering, i.e., many triangles;
B Model never scale-free, i.e., either degrees are infinite a.s., or
have thin tails;
B Instantaneous percolation only when degrees are infinite a.s.



Percolation in random
environment

B Equip each vertex x ∈ Zd with random weight Wx, where

(Wx)x∈Zd are i.i.d. random variables.

B Conditionally on weights, edges in graph are independent, and
probability that edge between x and y is present equals

pxy = 1− e−λWxWy/|x−y|α.

B Special attention to weights with power-law distribution:

P(Wx ≥ w) = w−(τ−1)L(w),

where τ > 1, w 7→ L(w) is slowly varying. (Often take L(w) ≡ c.)

B Long-range nature determined by parameter α > 0.
B Percolative properties determined by parameter λ > 0.
B Inhomogeneity determined by distribution of (Wx).



Questions and remarks
Model interpolates between

B long-range percolation, obtained when Wx ≡ 1;

B inhomogeneous random graphs, more precisely,
Poissonian random graph or Norros-Reittu model (06).

B small-world model (Strogatz-Watts) which has torus as vertex
set, and rare macroscopic connections. We have connections on
all length scales.

Investigate:
B Degree structure: How many neighbors do vertices have?
B Percolation: For which λ > 0 is there infinite component?
B Distances: What is graph distance x and y as |x− y| → ∞?



Inhomogeneous RG

τ = 1.95 (Joost Jorritsma)



Long-range percolation

d = 2, α = 3.9, λ = 0.1 (Joost Jorritsma)



Scale-free percolation

d = 2, α = 3.9, τ = 1.95, λ = 0.1 (Joost Jorritsma)



Scale-free percolation

d = 1, α = 2, τ = 1.95, λ = 0.1 (Joost Jorritsma)



Degrees
Special attention to weights with power-law distribution:

P(Wx ≥ w) = w−(τ−1)L(w),

where τ > 1, w 7→ L(w) is slowly varying. (Often take L(w) ≡ c.)

Theorem 1 (Infinite degrees). P(D0 =∞ | W0 > 0) = 1 when either
α ≤ d, or α > d for power-law weights with γ = α(τ − 1)/d < 1.

Theorem 2 (Power-law degrees). For power-law weights, when
α > d and γ = α(τ − 1)/d > 1, there exists a function s 7→ `(s) that
is slowly varying at infinity s.t.

P(D0 > s) = s−γ`(s).

Power-law degrees in percolation model:
Scale-free percolation.



Degrees: Proof Theorem 1
W.l.o.g. take λ = 1. First take α > d, so that γ = α(τ − 1)/d ≤ 1 im-
plies τ ∈ (1, 2). For power-law weight distributions with τ ∈ (1, 2),

E[Wy1{Wy≤s}] = Θ(s2−τ ).

Thus, when γ = α(τ − 1)/d ≤ 1, using 1− e−x ≥ x1[0,1](x)/2,∑
y 6=0

P((0, y) occupied | W0 = w)=
∑
y 6=0

E
[
1− e−wWy/|y|α

]
≥ 1

2

∑
y 6=0

E
[
wWy/|y|α1{Wy≤|y|α/w}

]
≥ Cw−(2−τ)

∑
y 6=0

1

|y|α(τ−1)
=∞.

By Borel-Cantelli, implies that P(D0 =∞|W0 = w) = 1 when w > 0.
Similar (and easier) when α ≤ d.



Degrees: Proof Theorem 2
Crucially use that, for α > d, as a→∞,∑

y 6=0

(1− e−a/|y|
α
) = vd,αa

d/α(1 + o(1)).

Thus, when w > 1 is large, and with ξ = vd,αE[W d/α] <∞,

E[D0 | W0 = w] =
∑
y 6=0

(
1− E

[
e−wWy/|y|α

])
≈ ξwd/α,

Conditionally on W0 = w, D0 is sum independent indicators, and
thus highly concentrated when mean is large, i.e.,

P(D0 ≥ s) ≈ P(W0 ≥ (s/ξ)α/d) ≈ `(s)s−α(τ−1)/d = `(s)s−γ.

γ > 1 : finite-mean degrees;
γ > 2 : finite-variance degrees.



Percolation critical value
From now on, assume that long-range parameter α > d and power-
law exponent γ = α(τ − 1)/d > 1.

Write x←→ y when there is path of occupied bonds connecting x

and y. Let C(x) = {y : x←→ y} be cluster of x.

B Percolation probability: θ(λ) = P(|C(0)| =∞).

B Critical percolation value: λc = inf{λ : θ(λ) > 0}.

Theorem 3 (Finiteness critical value).
(a) λc <∞ in d ≥ 2 if P(W = 0) < 1.
(b) λc <∞ in d = 1 if α ∈ (1, 2], P(W = 0) < 1.
(c) λc =∞ in d = 1 if α > 2, γ = α(τ − 1)/d > 2.



Positivity threshold
Theorem 4 (Positivity critical value).

λc > 0 when γ = α(τ − 1)/d > 2.

Theorem 5 (Zero critical value).
λc = 0 when γ = α(τ − 1)/d ∈ (1, 2), i.e., θ(λ) > 0 for every λ > 0.

Robustness of phase transition (Jacob, Mörters)

Identical to Norros-Reittu model, novel for percolation models:

Norros-Reittu model: G = Kn, pij = 1− e−λWiWj/n.Giant component
exists for every λ > 0 when variance degrees is infinite.
NR-model: degrees have same number of moments as weights W.



Proof Theorem 4
We first assume that for E[W 2] <∞. When |C(0)| =∞, there exists
paths of arbitrary length from origin:

θ(λ) ≤
∑

x1,...,xn

P((xi−1, xi) occupied) =
∑

x1,...,xn

E
[ n∏
i=1

pxi−1,xi

]
,

where sum is over distinct vertices, with x0 = 0. Bound

px,y = 1− e−λWxWy|x−y|−α ≤ λWxWy|x− y|−α :

θ(λ)≤ λn
∑

x1,...,xn

E
[ n∏
i=1

Wxi−1Wxi|xi−1 − xi|−α
]

= λn
∑

x1,...,xn

E[W ]2E[W 2]n−1
n∏
i=1

|xi−1 − xi|−α ≤
(
λE[W 2]

∑
x 6=0

|x|−α
)n
.



Proof Theorem 4
When E[W 2] =∞, instead use Cauchy-Schwarz and bound

px,y = 1− e−λWxWy|x−y|−α ≤
(
λWxWy|x− y|−α ∧ 1

)
:

θ(λ)≤
∑

x1,...,xn

E
[ n∏
i=1

(
λWxi−1Wxi|xi−1 − xi|−α ∧ 1

)]
≤
(∑
x 6=0

E
[(
λW0W1|x|−α ∧ 1

)2]1/2)n
.

Key estimate: if P(W ≥ w) ≤ cw−(τ−1) with τ ∈ (1, 3), then

g(u) ≡ E
[(
W1W2/u ∧ 1

)2]
≤ C(1 + log u)u−(τ−1).

α(τ − 1)/2 > d when γ = α(τ − 1)/d > 2, so above sum finite.



Proof Theorem 5
We use renormalization argument for γ ∈ (1, 2). Prove θ(λ) > 0 for
any λ > 0 small. Take rλ large. By extreme value theory,

max
|x|<rλ

Wx = ΘP(r
d/(τ−1)
λ ).

For x ∈ Zd, let x(λ) be maximal weight vertex in {y : |y − rλx| ≤ rλ}.
Say (x, y) occupied when (x(λ), y(λ)) occupied.

For nearest-neighbor x, y, and with high probability,

P((x, y) occ. | (Wx)x∈Zd) ≈ 1− e−λWx(λ)Wy(λ)r
−α
λ ≈ 1− e−λr

2d/(τ−1)−α
λ .

Note 2d/(τ − 1)− α > 0 precisely when γ = α(τ − 1)/d < 2.

Take rλ so large that λr2d/(τ−1)−α
λ � 1. Then nearest-neighbor per-

colation model supercritical for small λ > 0. Implies that θ(λ) > 0.



Distances
Theorem 6 (Loglog distances for infinite variance degrees).
Fix λ > 0. For γ ∈ (1, 2) and any η > 0,

lim
|x|→∞

P
(
d(0, x) ≤ (1 + η)

2 log log |x|
| log(γ − 1)|

∣∣∣0←→ x
)

= 1.

and
lim
|x|→∞

P
(
d(0, x) ≥ (1− η)

2 log log |x|
| log(κ)|

)
= 1,

where κ = (γ ∧ α/d)− 1.

Identical to distance results for Norros-Reittu model (Chung-Lu 06,
Norros-Reittu 06).



Distances
Theorem 7. (Logarithmic bounds for finite variance degrees)
Fix λ > λc. For γ = α(τ − 1)/d > 2, there exists an η > 0 such that

lim
|x|→∞

P(d(0, x) ≥ η log |x|) = 1.

B Phase transition for distances depending on whether degrees
have finite or infinite variance.

Theorem 8 (Polynomial lower bound distances).
Fix λ > λc. For γ = α(τ − 1)/d > 2 and α > 2d, there exists ε > 0

such that
lim
|x|→∞

P(d(0, x) ≥ |x|ε) = 1.

B Similar to long-range percolation (Biskup 04, Berger 04).



Further results

B Diameter for α < d or γ < 1.

Benjamini, Kesten, Peres and Schramm (04): For long-random per-
colation, diam(C∞) = dd/(d− α)e a.s.
Heydenreich, Hulshof, Jorritsma (16): diameter bounded.

B Random walk on scale-free percolation cluster:
Heydenreich, Hulshof, Jorritsma (16):
Transient when α ∈ (d, 2d) or γ ∈ (1, 2).

Recurrent when d = 2 and γ > 2 or τ > 2.



Open problems
B Critical behavior:
Continuity percolation function?
Hazra+Wütrich (14): Yes, for α ∈ (d, 2d).

What is upper-critical dimension?

Norros-Reittu model: Scaling limit same as for Erdős-Rényi ran-
dom graph when γ > 3, different when γ ∈ (2, 3). (BvdHvL(09a,b)).

B Distances:
What happens when α > 2d, γ > 2?

Precise behavior for α ∈ (d, 2d), γ > 2? Polylogarithmic as for long-
range percolation: Biskup (04): (log |x|)∆, where ∆ = log2(2d/α)?

Hazra+Wütrich (14): Bounded below and above by (log |x|)∆ for
different ∆.



Open problems

B Other spatial models: Deprez+Hazra+Wüthrich (15), Hirsch (14):
Poisson version on Rd. Results on torus?

Can one define a spatial preferential attachment model on Zd?
On torus: Work by Jordan (10), Flaxman, Frieze, Vera (06,07): Fo-
cus is on degree sequence.
SPAM: Janssen, Pralat, Wilson (11): also geometry investigated.
Jacob, Mörters (15): Robustness!

Spatial configuration model on Zd?
Deijfen and collaborators: matching problems and percolation.
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And now for something
completely different...

Network Pages: interactive website by and for network afficionados...

www.networkpages.nl

We welcome contributions from everyone!


