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Complex networks

Yeast protein interaction network Internet topology in 2001

Attention focussing on unexpected commonality.



Scale-free paradigm
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Loglog plot degree sequences Internet Movie Database and Internet

> Straight line: proportion p,. of vertices with degree k satisfies
pr = ck™.
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Small-world paradigm
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Distances in SCC WWW and IMDb in 2003.



Random graphs for
complex networks

> Inhomogeneous random graph:
Vertex set [n] = {1,...,n}, edge ij independently present w.p. p;;.
Example: Erdés-Rényi model, for which p = A\ /n for some A > 0.

> Configuration model: Vertices in [n] have prescribed degree,
graph constructed by pairing half-edges.

> Preferential attachment model: Growing network, new vertices
more likely to attach to old vertices having high degree.

Models typically are non-spatial and have small clustering.
AIM: construct simple spatial scale-free random graph model.



Inhomogeneous rgs

Norros-Reittu model: Equip each vertex i € [n| ={1,...,n} with
random weight W;, where (W;),c|, are i.i.d. random variables.

Attach edge with probability p;; between vertices ¢ and j, where

pij =1— e AWiW;/n

Different edges are conditionally independent given weights, and
A > 0 is parameter. Retrieve Erdds-Rényi RG with p =1 — ¢ /"
when W; = 1.

> Related models:
Chung-Lu model: p;; = (W;W;/n) A 1;
Generalized random graph: p;; = W,W;/(n + W;WW;);

Janson (2010): Conditions for asymptotic equivalence.
Bollobas-Janson-Riordan (2007):
General set-up inhomogeneous random graphs.



Long-range percolation

Consider model on Z? where we attach edge between z,y € Z?
independently with probability

pyy — 1 _ e_/\/‘x_y|a.

Degree distribution:

l)w::: § ]fya

yezd

with 7, , independent Bernoulli variables with success prob. p,.,.

Properties:

> Percolation function continuous when o« € (d, 2d) (Berger 02);

> Graph distances polylogarithmic when « € (d, 2d) (Biskup 04);
> Model has high clustering, i.e., many triangles;

> Model never scale-free, i.e., either degrees are infinite a.s., or
have thin tails;

> Instantaneous percolation only when degrees are infinite a.s.



Percolation in random
environment

> Equip each vertex = € Z? with random weight .., where
(W2),eza are i.i.d. random variables.

> Conditionally on weights, edges in graph are independent, and
probability that edge between = and y is present equals

Doy = 1 — e MWalu/le—ul®,

> Special attention to weights with power-law distribution:
P(W, > w) = w "V L(w),
where 7 > 1, w — L(w) is slowly varying. (Often take L(w) = ¢.)

> Long-range nature determined by parameter o > 0.
> Percolative properties determined by parameter \ > 0.
> Inhomogeneity determined by distribution of ().



Questions and remarks

Model interpolates between

> long-range percolation, obtained when W, = 1;
> inhomogeneous random graphs, more precisely,

Poissonian random graph or Norros-Reittu model (06).
> small-world model (Strogatz-Watts) which has torus as vertex
set, and rare macroscopic connections. We have connections on
all length scales.

Investigate:

> Degree structure: How many neighbors do vertices have?
> Percolation: For which \ > 0 is there infinite component?

> Distances: What is graph distance = and y as | — y| — oo?



Inhomogeneous RG
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Long-range percolation
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Scale-free percolation
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Scale-free percolation
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Degrees

Special attention to weights with power-law distribution:
P(W, > w) =w ""YL(w),

where 7 > 1, w — L(w) is slowly varying. (Often take L(w) = ¢.)

Theorem 1 (Infinite degrees). P(Dy = oo | W, > 0) = 1 when either
a < d, or a > d for power-law weights with v = a(7 — 1) /d < 1.

Theorem 2 (Power-law degrees). For power-law weights, when

a>dand vy =a(r —1)/d > 1, there exists a function s — /(s) that
is slowly varying at infinity s.t.

P(Dy > s)=s "4(s).

Power-law degrees in percolation model:
Scale-free percolation.



Degrees: Proof Theorem 1

W.l.o.g. take A = 1. First take o > d, sothat y = «a(7 —1)/d < 1 im-
plies 7 € (1,2). For power-law weight distributions with 7 € (1, 2),

E[W,1ay,<q) = 0(5°77).
Thus, when v = a(r —1)/d < 1,using 1 —e " > x1j)(x)/2,
ZP((O, y) occupied | Wy = w)= ZE[l — C—wWy/ly\“]
y7#0 y#0

1 (%
> 2 Y E[wW,/ly] ]l{wysryvvw}]
y#0

> Cw™ 272
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By Borel-Cantelli, implies that P(Dy = co|Wy = w) = 1 when w > 0.
Similar (and easier) when a < d.



Degrees: Proof Theorem 2

Crucially use that, for o > d, as a — oo,

D (1= %) = vy a1+ o(1)).

y70

Thus, when w > 1 is large, and with & = v, ,E[W %] < oo,
E[Do | Wo = w] = (1-E|e"/hl"]) » gutle,
y#0

Conditionally on W, = w, D, is sum independent indicators, and
thus highly concentrated when mean is large, i.e.,

P(Dy > 5) = P(Wy > (5/6)%) ~ (s)s V4 = ¢(5)s77.

~v > 1: finite-mean degrees;
~v > 2 : finite-variance degrees.



Percolation critical value

From now on, assume that long-range parameter a > d and power-
law exponent v = a(r — 1)/d > 1.

Write « «+— y when there is path of occupied bonds connecting x
and y. Let C(x) = {y: x +— y} be cluster of x.

> Percolation probability: 6(\) = P(|C(0)| = o0).
> Critical percolation value: A\. = inf{\: 8(\) > 0}.

Theorem 3 (Finiteness critical value).
(@) A\ <ooind>2ifP(W =0) <

(b) \e < cind=11if a € (1,2], ( 0) <
C) de=cind=1ifa>2 7—04(7'—1)/



Positivity threshold

Theorem 4 (Positivity critical value).
Ae > 0when vy =a(r—1)/d > 2.

Theorem 5 (Zero critical value).
Ae=0when~ =a(r—1)/d € (1,2), i.e., 0(\) > 0 for every \ > 0.

Robustness of phase transition (Jacob, Morters)

|dentical to Norros-Reittu model, novel for percolation models:

Norros-Reittu model: G = K,,, p;; = 1 — e~ Wi/ Giant component
exists for every A > 0 when variance degrees is infinite.
NR-model: degrees have same number of moments as weights V.



Proof Theorem 4

We first assume that for E[177?] < co. When |C(0)| = oo, there exists
paths of arbitrary length from origin:

O(\) < Z P((x;_1,z;) occupied) = Z [Hp% m},

T1,...,Tn L1509y

where sum is over distinct vertices, with x, = 0. Bound

Pry=1— e AWaWyle=yl™® < AW Wylo —y|™*

OAN)< N Z [H v 1Wxi|xi_1—x¢|_o‘}

_\n Z E[W}QE[WZ]H—l H ’xi—l o ZC@’_Q < ()\]E[WQ} Z ‘x"a)

X1,y Tn i=1 x#£0

n



Proof Theorem 4

When E[17?] = oo, instead use Cauchy-Schwarz and bound

px,y —1— e—AWzWy‘ﬂf—y’_a S ()\way‘m o y‘—a A 1) :

n

o< > B[ TT (War, Walwia = il A1)

T 1=1
211/2\ n
< (ZE[(AW()Wl\x\—aA1) } ) |
x#£0

Key estimate: if P(W > w) < cw™ "=V with 7 € (1, 3), then
2
g(u) = E[(Wlwg/u A 1) } < C(1+logu)yu Y,

a(t—1)/2 >dwheny=a(r —1)/d > 2, so above sum finite.



Proof Theorem 5

We use renormalization argument for v € (1,2). Prove 6(\) > 0 for
any A > 0 small. Take r) large. By extreme value theory,

max W, = O,(r7/ "),

|z|<ry,

For z € 74, let 2()\) be maximal weight vertex in {y: |y — rax| < r)\}.
Say (z,y) occupied when (xz()\), y(\)) occupied.

For nearest-neighbor z, ¢y, and with high probability,

—a 2d/(r—1)—a
P((z,y) ocC. | (W,),cqa) = 1 — e MWe0Wy0"\" 1 — o727

Note 2d/(7 — 1) — o > 0 precisely when v = a(r — 1)/d < 2.

Take r) so large that Arid/”_l)_o‘ > 1. Then nearest-neighbor per-

colation model supercritical for small A > 0. Implies that 6(\) > 0.



Distances

Theorem 6 (Loglog distances for infinite variance degrees).
Fix A > 0. Forv € (1,2) and any n > 0,

, 2loglog |z|
lim P(do,xg 1+ |0< >a:>:1.
2|00 (02) < (L+7) | log(y — 1)

and

, 2log log |x|
lim ]P’(dO,az > (1 — ):1,
|| =00 (0,2) = (1 =) | log(k)|

where k = (y A a/d) — 1.

|dentical to distance results for Norros-Reittu model (Chung-Lu 06,
Norros-Reittu 06).



Distances

Theorem 7. (Logarithmic bounds for finite variance degrees)

Fix A > .. For v = a(r — 1)/d > 2, there exists an n > 0 such that
’ l‘im P(d(0,z) > nlog |z|) = 1.
T|—r00

> Phase transition for distances depending on whether degrees
have finite or infinite variance.

Theorem 8 (Polynomial lower bound distances).
Fix A > \.. For y =a(r —1)/d > 2 and « > 2d, there exists ¢ > 0
such that

lim P(d(0,z) > |z]7) = 1.

|z|—00

> Similar to long-range percolation (Biskup 04, Berger 04).



Further results

> Diameter for a < dor v < 1.

Benjamini, Kesten, Peres and Schramm (04): For long-random per-
colation, diam(C..) = [d/(d — «)] a.s.

Heydenreich, Hulshof, Jorritsma (16): diameter bounded.

> Random walk on scale-free percolation cluster:
Heydenreich, Hulshof, Jorritsma (16):

Transient when o € (d,2d) or v € (1, 2).
Recurrentwhend=2and~ > 2orr > 2.



Open problems

> Critical behavior:

Continuity percolation function?
Hazra+Wiitrich (14): Yes, for a € (d, 2d).
What is upper-critical dimension?

Norros-Reittu model: Scaling limit same as for Erdds-Rényi ran-
dom graph when ~ > 3, different when ~ € (2, 3). (BvdHvL(09a,b)).

> Distances:

What happens when a > 2d, v > 27

Precise behavior for a € (d,2d),~ > 27 Polylogarithmic as for long-
range percolation: Biskup (04): (log |z|)*, where A = log,(2d/a)?

Hazra+Wautrich (14): Bounded below and above by (log|z|)> for
different A.



Open problems

> Other spatial models: Deprez+Hazra+Wathrich (15), Hirsch (14):
Poisson version on R?. Results on torus?

Can one define a spatial preferential attachment model on Z??

On torus: Work by Jordan (10), Flaxman, Frieze, Vera (06,07): Fo-
Cus is on degree sequence.

SPAM: Janssen, Pralat, Wilson (11): also geometry investigated.
Jacob, Morters (15): Robustness!

Spatial configuration model on Z??
Deijfen and collaborators: matching problems and percolation.
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And now for something
completely different...

Network Pages: interactive website by and for network afficionados...
www.networkpages.nl

We welcome contributions from everyone!



