

Scale-free percolation

Remco van der Hofstad

Simons Conference on Random Graph Processes, May 9-12, 2016, UT Austin

Joint work with:
\triangleright Mia Deijfen (Stockholm)
\triangleright Gerard Hooghiemstra (TU Delft)

Complex networks

Yeast protein interaction network

Internet topology in 2001

Attention focussing on unexpected commonality.

Scale-free paradigm

Loglog plot degree sequences Internet Movie Database and Internet
\triangleright Straight line: proportion p_{k} of vertices with degree k satisfies

$$
p_{k}=c k^{-\tau} .
$$

Small-world paradigm

Distances in SCC WWW and IMDb in 2003.

Random graphs for complex networks

\triangleright Inhomogeneous random graph:
Vertex set $[n]=\{1, \ldots, n\}$, edge $i j$ independently present w.p. $p_{i j}$. Example: Erdős-Rényi model, for which $p=\lambda / n$ for some $\lambda>0$.
\triangleright Configuration model: Vertices in $[n]$ have prescribed degree, graph constructed by pairing half-edges.
\triangleright Preferential attachment model: Growing network, new vertices more likely to attach to old vertices having high degree.

Models typically are non-spatial and have small clustering.
AIM: construct simple spatial scale-free random graph model.

Inhomogeneous rgs

Norros-Reittu model: Equip each vertex $i \in[n]=\{1, \ldots, n\}$ with random weight W_{i}, where $\left(W_{i}\right)_{i \in[n]}$ are i.i.d. random variables.

Attach edge with probability $p_{i j}$ between vertices i and j, where

$$
p_{i j}=1-\mathrm{e}^{-\lambda W_{i} W_{j} / n} .
$$

Different edges are conditionally independent given weights, and $\lambda>0$ is parameter. Retrieve Erdős-Rényi RG with $p=1-\mathrm{e}^{-\lambda / n}$ when $W_{i} \equiv 1$.
\triangleright Related models:
Chung-Lu model: $p_{i j}=\left(W_{i} W_{j} / n\right) \wedge 1$;
Generalized random graph: $p_{i j}=W_{i} W_{j} /\left(n+W_{i} W_{j}\right)$;
Janson (2010): Conditions for asymptotic equivalence. Bollobás-Janson-Riordan (2007): General set-up inhomogeneous random graphs.

Long-range percolation

Consider model on \mathbb{Z}^{d} where we attach edge between $x, y \in \mathbb{Z}^{d}$ independently with probability

$$
p_{x, y}=1-\mathrm{e}^{-\lambda /|x-y|^{\alpha}} .
$$

Degree distribution:

$$
D_{x}=\sum_{y \in \mathbb{Z}^{d}} I_{x, y},
$$

with $I_{x, y}$ independent Bernoulli variables with success prob. $p_{x y}$.

Properties:

\triangleright Percolation function continuous when $\alpha \in(d, 2 d)$ (Berger 02);
\triangleright Graph distances polylogarithmic when $\alpha \in(d, 2 d)$ (Biskup 04);
\triangleright Model has high clustering, i.e., many triangles;
\triangleright Model never scale-free, i.e., either degrees are infinite a.s., or have thin tails;
\triangleright Instantaneous percolation only when degrees are infinite a.s.

Percolation in random environment

\triangleright Equip each vertex $x \in \mathbb{Z}^{d}$ with random weight W_{x}, where

$$
\left(W_{x}\right)_{x \in \mathbb{Z}^{d}} \text { are i.i.d. random variables. }
$$

\triangleright Conditionally on weights, edges in graph are independent, and probability that edge between x and y is present equals

$$
p_{x y}=1-\mathrm{e}^{-\lambda W_{x} W_{y} /|x-y|^{\alpha}} .
$$

\triangleright Special attention to weights with power-law distribution:

$$
\mathbb{P}\left(W_{x} \geq w\right)=w^{-(\tau-1)} L(w)
$$

where $\tau>1, w \mapsto L(w)$ is slowly varying. (Often take $L(w) \equiv c$.)
\triangleright Long-range nature determined by parameter $\alpha>0$.
\triangleright Percolative properties determined by parameter $\lambda>0$.
\triangleright Inhomogeneity determined by distribution of $\left(W_{x}\right)$.

Questions and remarks

Model interpolates between
\triangleright long-range percolation, obtained when $W_{x} \equiv 1$;
\triangleright inhomogeneous random graphs, more precisely,
Poissonian random graph or Norros-Reittu model (06).
\triangleright small-world model (Strogatz-Watts) which has torus as vertex set, and rare macroscopic connections. We have connections on all length scales.

Investigate:

\triangleright Degree structure: How many neighbors do vertices have?
\triangleright Percolation: For which $\lambda>0$ is there infinite component?
\triangleright Distances: What is graph distance x and y as $|x-y| \rightarrow \infty$?

Inhomogeneous RG

Long-range percolation

$$
d=2, \alpha=3.9, \lambda=0.1 \text { (Joost Jorritsma) }
$$

Scale-free percolation

$$
d=2, \alpha=3.9, \tau=1.95, \lambda=0.1 \text { (Joost Jorritsma) }
$$

Scale-free percolation

Degrees

Special attention to weights with power-law distribution:

$$
\mathbb{P}\left(W_{x} \geq w\right)=w^{-(\tau-1)} L(w)
$$

where $\tau>1, w \mapsto L(w)$ is slowly varying. (Often take $L(w) \equiv c$.)
Theorem 1 (Infinite degrees). $\mathbb{P}\left(D_{0}=\infty \mid W_{0}>0\right)=1$ when either $\alpha \leq d$, or $\alpha>d$ for power-law weights with $\gamma=\alpha(\tau-1) / d<1$.

Theorem 2 (Power-law degrees). For power-law weights, when $\alpha>d$ and $\gamma=\alpha(\tau-1) / d>1$, there exists a function $s \mapsto \ell(s)$ that is slowly varying at infinity s.t.

$$
\mathbb{P}\left(D_{0}>s\right)=s^{-\gamma} \ell(s) .
$$

Power-law degrees in percolation model:
Scale-free percolation.

Degrees: Proof Theorem 1

W.I.o.g. take $\lambda=1$. First take $\alpha>d$, so that $\gamma=\alpha(\tau-1) / d \leq 1 \mathrm{im}-$ plies $\tau \in(1,2)$. For power-law weight distributions with $\tau \in(1,2)$,

$$
\mathbb{E}\left[W_{y} \mathbb{1}_{\left\{W_{y} \leq s\right\}}\right]=\Theta\left(s^{2-\tau}\right) .
$$

Thus, when $\gamma=\alpha(\tau-1) / d \leq 1$, using $1-\mathrm{e}^{-x} \geq x \mathbb{1}_{[0,1]}(x) / 2$,

$$
\begin{aligned}
\sum_{y \neq 0} \mathbb{P}\left((0, y) \text { occupied } \mid W_{0}=w\right) & =\sum_{y \neq 0} \mathbb{E}\left[1-\mathrm{e}^{-w W_{y} /|y|^{\alpha}}\right] \\
& \geq \frac{1}{2} \sum_{y \neq 0} \mathbb{E}\left[w W_{y} /|y|^{\alpha} \mathbb{1}_{\left\{W_{y} \leq|y|^{\alpha} / w\right\}}\right] \\
& \geq C w^{-(2-\tau)} \sum_{y \neq 0} \frac{1}{|y|^{\alpha(\tau-1)}}=\infty .
\end{aligned}
$$

By Borel-Cantelli, implies that $\mathbb{P}\left(D_{0}=\infty \mid W_{0}=w\right)=1$ when $w>0$. Similar (and easier) when $\alpha \leq d$.

Degrees: Proof Theorem 2

Crucially use that, for $\alpha>d$, as $a \rightarrow \infty$,

$$
\sum_{y \neq 0}\left(1-\mathrm{e}^{-a /|y|^{\alpha}}\right)=v_{d, \alpha} a^{d / \alpha}(1+o(1)) .
$$

Thus, when $w>1$ is large, and with $\xi=v_{d, \alpha} \mathbb{E}\left[W^{d / \alpha}\right]<\infty$,

$$
\mathbb{E}\left[D_{0} \mid W_{0}=w\right]=\sum_{y \neq 0}\left(1-\mathbb{E}\left[\mathrm{e}^{-w W_{y} /|y|^{\alpha}}\right]\right) \approx \xi w^{d / \alpha},
$$

Conditionally on $W_{0}=w, D_{0}$ is sum independent indicators, and thus highly concentrated when mean is large, i.e.,

$$
\mathbb{P}\left(D_{0} \geq s\right) \approx \mathbb{P}\left(W_{0} \geq(s / \xi)^{\alpha / d}\right) \approx \ell(s) s^{-\alpha(\tau-1) / d}=\ell(s) s^{-\gamma}
$$

$\gamma>1$: finite-mean degrees;
$\gamma>2$: finite-variance degrees.

Percolation critical value

From now on, assume that long-range parameter $\alpha>d$ and powerlaw exponent $\gamma=\alpha(\tau-1) / d>1$.

Write $x \longleftrightarrow y$ when there is path of occupied bonds connecting x and y. Let $\mathcal{C}(x)=\{y: x \longleftrightarrow y\}$ be cluster of x.
\triangleright Percolation probability: $\theta(\lambda)=\mathbb{P}(|\mathcal{C}(0)|=\infty)$.
\triangleright Critical percolation value: $\lambda_{c}=\inf \{\lambda: \theta(\lambda)>0\}$.

Theorem 3 (Finiteness critical value).
(a) $\lambda_{c}<\infty$ in $d \geq 2$ if $\mathbb{P}(W=0)<1$.
(b) $\lambda_{c}<\infty$ in $d=1$ if $\alpha \in(1,2], \mathbb{P}(W=0)<1$.
(c) $\lambda_{c}=\infty$ in $d=1$ if $\alpha>2, \gamma=\alpha(\tau-1) / d>2$.

Positivity threshold

Theorem 4 (Positivity critical value).

$$
\lambda_{c}>0 \text { when } \gamma=\alpha(\tau-1) / d>2
$$

Theorem 5 (Zero critical value).
$\lambda_{c}=0$ when $\gamma=\alpha(\tau-1) / d \in(1,2)$, i.e., $\theta(\lambda)>0$ for every $\lambda>0$.

Robustness of phase transition (Jacob, Mörters)

Identical to Norros-Reittu model, novel for percolation models:
Norros-Reittu model: $G=K_{n}, p_{i j}=1-\mathrm{e}^{-\lambda W_{i} W_{j} / n}$. Giant component exists for every $\lambda>0$ when variance degrees is infinite.
NR-model: degrees have same number of moments as weights W.

Proof Theorem 4

We first assume that for $\mathbb{E}\left[W^{2}\right]<\infty$. When $|\mathcal{C}(0)|=\infty$, there exists paths of arbitrary length from origin:

$$
\theta(\lambda) \leq \sum_{x_{1}, \ldots, x_{n}} \mathbb{P}\left(\left(x_{i-1}, x_{i}\right) \text { occupied }\right)=\sum_{x_{1}, \ldots, x_{n}} \mathbb{E}\left[\prod_{i=1}^{n} p_{x_{i-1}, x_{i}}\right]
$$

where sum is over distinct vertices, with $x_{0}=0$. Bound

$$
\begin{gathered}
p_{x, y}=1-\mathrm{e}^{-\lambda W_{x} W_{y}|x-y|^{-\alpha}} \leq \lambda W_{x} W_{y}|x-y|^{-\alpha}: \\
\theta(\lambda) \leq \lambda^{n} \sum_{x_{1}, \ldots, x_{n}} \mathbb{E}\left[\prod_{i=1}^{n} W_{x_{i-1}} W_{x_{i}}\left|x_{i-1}-x_{i}\right|^{-\alpha}\right] \\
=\lambda^{n} \sum_{x_{1}, \ldots, x_{n}} \mathbb{E}[W]^{2} \mathbb{E}\left[W^{2}\right]^{n-1} \prod_{i=1}^{n}\left|x_{i-1}-x_{i}\right|^{-\alpha} \leq\left(\lambda \mathbb{E}\left[W^{2}\right] \sum_{x \neq 0}|x|^{-\alpha}\right)^{n} .
\end{gathered}
$$

Proof Theorem 4

When $\mathbb{E}\left[W^{2}\right]=\infty$, instead use Cauchy-Schwarz and bound

$$
\begin{aligned}
p_{x, y} & =1-\mathrm{e}^{-\lambda W_{x} W_{y}|x-y|^{-\alpha}} \leq\left(\lambda W_{x} W_{y}|x-y|^{-\alpha} \wedge 1\right): \\
\theta(\lambda) & \leq \sum_{x_{1}, \ldots, x_{n}} \mathbb{E}\left[\prod_{i=1}^{n}\left(\lambda W_{x_{i-1}} W_{x_{i}}\left|x_{i-1}-x_{i}\right|^{-\alpha} \wedge 1\right)\right] \\
& \leq\left(\sum_{x \neq 0} \mathbb{E}\left[\left(\lambda W_{0} W_{1}|x|^{-\alpha} \wedge 1\right)^{2}\right]^{1 / 2}\right)^{n} .
\end{aligned}
$$

Key estimate: if $\mathbb{P}(W \geq w) \leq c w^{-(\tau-1)}$ with $\tau \in(1,3)$, then

$$
g(u) \equiv \mathbb{E}\left[\left(W_{1} W_{2} / u \wedge 1\right)^{2}\right] \leq C(1+\log u) u^{-(\tau-1)}
$$

$\alpha(\tau-1) / 2>d$ when $\gamma=\alpha(\tau-1) / d>2$, so above sum finite.

Proof Theorem 5

We use renormalization argument for $\gamma \in(1,2)$. Prove $\theta(\lambda)>0$ for any $\lambda>0$ small. Take r_{λ} large. By extreme value theory,

$$
\max _{|x|<r_{\lambda}} W_{x}=\Theta_{\mathbb{P}}\left(r_{\lambda}^{d /(\tau-1)}\right)
$$

For $x \in \mathbb{Z}^{d}$, let $x(\lambda)$ be maximal weight vertex in $\left\{y:\left|y-r_{\lambda} x\right| \leq r_{\lambda}\right\}$. Say (x, y) occupied when $(x(\lambda), y(\lambda))$ occupied.

For nearest-neighbor x, y, and with high probability,

$$
\mathbb{P}\left((x, y) \text { occ. } \mid\left(W_{x}\right)_{x \in \mathbb{Z}^{d}}\right) \approx 1-\mathrm{e}^{-\lambda W_{x(\lambda)} W_{y(\lambda)} r_{\lambda}^{-\alpha}} \approx 1-\mathrm{e}^{-\lambda r_{\lambda}^{2 d /(\tau-1)-\alpha}} .
$$

Note $2 d /(\tau-1)-\alpha>0$ precisely when $\gamma=\alpha(\tau-1) / d<2$.

Take r_{λ} so large that $\lambda r_{\lambda}^{2 d /(\tau-1)-\alpha} \gg 1$. Then nearest-neighbor percolation model supercritical for small $\lambda>0$. Implies that $\theta(\lambda)>0$.

Distances

Theorem 6 (Loglog distances for infinite variance degrees).
Fix $\lambda>0$. For $\gamma \in(1,2)$ and any $\eta>0$,

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}\left(\left.d(0, x) \leq(1+\eta) \frac{2 \log \log |x|}{|\log (\gamma-1)|} \right\rvert\, 0 \longleftrightarrow x\right)=1
$$

and

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}\left(d(0, x) \geq(1-\eta) \frac{2 \log \log |x|}{|\log (\kappa)|}\right)=1
$$

where $\kappa=(\gamma \wedge \alpha / d)-1$.

Identical to distance results for Norros-Reittu model (Chung-Lu 06, Norros-Reittu 06).

Distances

Theorem 7. (Logarithmic bounds for finite variance degrees)
Fix $\lambda>\lambda_{c}$. For $\gamma=\alpha(\tau-1) / d>2$, there exists an $\eta>0$ such that

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}(d(0, x) \geq \eta \log |x|)=1
$$

\triangleright Phase transition for distances depending on whether degrees have finite or infinite variance.

Theorem 8 (Polynomial lower bound distances).
Fix $\lambda>\lambda_{c}$. For $\gamma=\alpha(\tau-1) / d>2$ and $\alpha>2 d$, there exists $\varepsilon>0$ such that

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}\left(d(0, x) \geq|x|^{\varepsilon}\right)=1
$$

\triangleright Similar to long-range percolation (Biskup 04, Berger 04).

Further results

\triangleright Diameter for $\alpha<d$ or $\gamma<1$.
Benjamini, Kesten, Peres and Schramm (04): For long-random percolation, $\operatorname{diam}\left(\mathcal{C}_{\infty}\right)=\lceil d /(d-\alpha)\rceil$ a.s. Heydenreich, Hulshof, Jorritsma (16): diameter bounded.
\triangleright Random walk on scale-free percolation cluster: Heydenreich, Hulshof, Jorritsma (16):
Transient when $\alpha \in(d, 2 d)$ or $\gamma \in(1,2)$.
Recurrent when $d=2$ and $\gamma>2$ or $\tau>2$.

Open problems

\triangleright Critical behavior:
Continuity percolation function?
Hazra+Wütrich (14): Yes, for $\alpha \in(d, 2 d)$.
What is upper-critical dimension?
Norros-Reittu model: Scaling limit same as for Erdős-Rényi random graph when $\gamma>3$, different when $\gamma \in(2,3)$. (BvdHvL(09a,b)).
\triangleright Distances:
What happens when $\alpha>2 d, \gamma>2$?
Precise behavior for $\alpha \in(d, 2 d), \gamma>2$? Polylogarithmic as for longrange percolation: Biskup (04): $(\log |x|)^{\Delta}$, where $\Delta=\log _{2}(2 d / \alpha)$?

Hazra+Wütrich (14): Bounded below and above by $(\log |x|)^{\Delta}$ for different Δ.

Open problems

\triangleright Other spatial models: Deprez+Hazra+Wüthrich (15), Hirsch (14): Poisson version on \mathbb{R}^{d}. Results on torus?

Can one define a spatial preferential attachment model on \mathbb{Z}^{d} ? On torus: Work by Jordan (10), Flaxman, Frieze, Vera $(06,07)$: Focus is on degree sequence.
SPAM: Janssen, Pralat, Wilson (11): also geometry investigated. Jacob, Mörters (15): Robustness!

Spatial configuration model on \mathbb{Z}^{d} ?
Deijfen and collaborators: matching problems and percolation.

Literature

[1] Berger. Transience, recurrence and critical behavior for long-range percolation. Preprint, arXiv:math/0409021v1, (2004).
[2] Berger. A lower bound for chemical distances in sparse long-range percolation models. Comm. Math. Phys. 226, 531-558, (2002).
[3] Biskup. On the scaling of the chemical distance in long-range percolation models, Ann. Probab. 32, 2933-2977, (2004).
[4] Deijfen, van der Hofstad and Hooghiemstra.
Scale-free percolation. AIHP 49(3), 817-838, (2013).
[5] Norros and Reittu. On a conditionally Poissonian graph process. Adv. Appl. Probab. 38, 59-75, (2006).
[6] Deprez, Hazra and Wütrich. Inhomogeneous long-range percolation for real-life network modeling. Risks 3: 1-23, (2015).
[7] Hazra and Wütrich. Continuity of the percolation probability \& chemical distances in inhomogeneous long-range percolation. Preprint (2014).
[8] Hirsch. From heavy-tailed Boolean models to scale-free Gilbert graphs. Preprint (2014).

And now for something completely different...

Network Pages: interactive website by and for network afficionados...
www.networkpages.nl

We welcome contributions from everyone!

