

Scale-free percolation

Remco van der Hofstad

Simons Conference on Random Graph Processes, May 9–12, 2016, UT Austin

Joint work with: ▷ Mia Deijfen (Stockholm) ▷ Gerard Hooghiemstra (TU Delft)

Complex networks

Yeast protein interaction network

Internet topology in 2001

Attention focussing on unexpected commonality.

Scale-free paradigm

Loglog plot degree sequences Internet Movie Database and Internet

> Straight line: proportion p_k of vertices with degree k satisfies $p_k = ck^{-\tau}$.

Small-world paradigm

Distances in SCC WWW and IMDb in 2003.

Random graphs for complex networks

> Inhomogeneous random graph: Vertex set $[n] = \{1, ..., n\}$, edge ij independently present w.p. p_{ij} . Example: Erdős-Rényi model, for which $p = \lambda/n$ for some $\lambda > 0$.

 \triangleright Configuration model: Vertices in [n] have prescribed degree, graph constructed by pairing half-edges.

Preferential attachment model: Growing network, new vertices more likely to attach to old vertices having high degree.

Models typically are non-spatial and have small clustering. AIM: construct simple spatial scale-free random graph model.

Inhomogeneous rgs

Norros-Reittu model: Equip each vertex $i \in [n] = \{1, ..., n\}$ with random weight W_i , where $(W_i)_{i \in [n]}$ are i.i.d. random variables.

Attach edge with probability p_{ij} between vertices *i* and *j*, where

 $p_{ij} = 1 - \mathrm{e}^{-\lambda W_i W_j / n}.$

Different edges are conditionally independent given weights, and $\lambda > 0$ is parameter. Retrieve Erdős-Rényi RG with $p = 1 - e^{-\lambda/n}$ when $W_i \equiv 1$.

▷ Related models: Chung-Lu model: $p_{ij} = (W_i W_j / n) \land 1$; Generalized random graph: $p_{ij} = W_i W_j / (n + W_i W_j)$;

Janson (2010): Conditions for asymptotic equivalence. Bollobás-Janson-Riordan (2007): General set-up inhomogeneous random graphs.

Long-range percolation

Consider model on \mathbb{Z}^d where we attach edge between $x, y \in \mathbb{Z}^d$ independently with probability

$$p_{x,y} = 1 - \mathrm{e}^{-\lambda/|x-y|^{\alpha}}.$$

Degree distribution:

$$D_x = \sum_{y \in \mathbb{Z}^d} I_{x,y},$$

with $I_{x,y}$ independent Bernoulli variables with success prob. p_{xy} .

Properties:

- \triangleright Percolation function continuous when $\alpha \in (d, 2d)$ (Berger 02);
- \triangleright Graph distances polylogarithmic when $\alpha \in (d, 2d)$ (Biskup 04);
- ▷ Model has high clustering, i.e., many triangles;
- ▷ Model never scale-free, i.e., either degrees are infinite a.s., or have thin tails;
- ▷ Instantaneous percolation only when degrees are infinite a.s.

Percolation in random environment

 \triangleright Equip each vertex $x \in \mathbb{Z}^d$ with random weight W_x , where

 $(W_x)_{x\in\mathbb{Z}^d}$ are i.i.d. random variables.

 \triangleright Conditionally on weights, edges in graph are independent, and probability that edge between x and y is present equals

$$p_{xy} = 1 - e^{-\lambda W_x W_y / |x-y|^{\alpha}}.$$

> Special attention to weights with power-law distribution:

$$\mathbb{P}(W_x \ge w) = w^{-(\tau-1)}L(w),$$

where $\tau > 1, w \mapsto L(w)$ is slowly varying. (Often take $L(w) \equiv c$.)

▷ Long-range nature determined by parameter $\alpha > 0$. ▷ Percolative properties determined by parameter $\lambda > 0$. ▷ Inhomogeneity determined by distribution of (W_x) .

Questions and remarks

Model interpolates between

▷ long-range percolation, obtained when $W_x \equiv 1$; ▷ inhomogeneous random graphs, more precisely,

Poissonian random graph or Norros-Reittu model (06).

▷ small-world model (Strogatz-Watts) which has torus as vertex set, and rare macroscopic connections. We have connections on all length scales.

Investigate:

> Degree structure: How many neighbors do vertices have?

 \triangleright Percolation: For which $\lambda > 0$ is there infinite component?

 \triangleright Distances: What is graph distance x and y as $|x - y| \rightarrow \infty$?

Inhomogeneous RG

 $\tau = 1.95$ (Joost Jorritsma)

Long-range percolation

 $d = 2, \ \alpha = 3.9, \ \lambda = 0.1$ (Joost Jorritsma)

Scale-free percolation

 $d = 2, \ \alpha = 3.9, \ \tau = 1.95, \ \lambda = 0.1$ (Joost Jorritsma)

Scale-free percolation

 $d = 1, \ \alpha = 2, \ \tau = 1.95, \ \lambda = 0.1$ (Joost Jorritsma)

Special attention to weights with power-law distribution:

$$\mathbb{P}(W_x \ge w) = w^{-(\tau-1)}L(w),$$

where $\tau > 1, w \mapsto L(w)$ is slowly varying. (Often take $L(w) \equiv c$.)

Theorem 1 (Infinite degrees). $\mathbb{P}(D_0 = \infty \mid W_0 > 0) = 1$ when either $\alpha \leq d$, or $\alpha > d$ for power-law weights with $\gamma = \alpha(\tau - 1)/d < 1$.

Theorem 2 (Power-law degrees). For power-law weights, when $\alpha > d$ and $\gamma = \alpha(\tau - 1)/d > 1$, there exists a function $s \mapsto \ell(s)$ that is slowly varying at infinity s.t.

$$\mathbb{P}(D_0 > s) = s^{-\gamma} \ell(s).$$

Power-law degrees in percolation model: Scale-free percolation.

Degrees: Proof Theorem 1

W.I.o.g. take $\lambda = 1$. First take $\alpha > d$, so that $\gamma = \alpha(\tau - 1)/d \le 1$ implies $\tau \in (1, 2)$. For power-law weight distributions with $\tau \in (1, 2)$,

$$\mathbb{E}[W_y \mathbb{1}_{\{W_y \le s\}}] = \Theta(s^{2-\tau}).$$

Thus, when $\gamma = \alpha(\tau - 1)/d \le 1$, using $1 - e^{-x} \ge x \mathbb{1}_{[0,1]}(x)/2$,

$$\begin{split} \sum_{y \neq 0} \mathbb{P}((0, y) \text{ occupied } \mid W_0 = w) &= \sum_{y \neq 0} \mathbb{E} \Big[1 - e^{-wW_y/|y|^{\alpha}} \Big] \\ &\geq \frac{1}{2} \sum_{y \neq 0} \mathbb{E} \Big[wW_y/|y|^{\alpha} \mathbb{1}_{\{W_y \leq |y|^{\alpha}/w\}} \Big] \\ &\geq Cw^{-(2-\tau)} \sum_{y \neq 0} \frac{1}{|y|^{\alpha(\tau-1)}} = \infty. \end{split}$$

By Borel-Cantelli, implies that $\mathbb{P}(D_0 = \infty | W_0 = w) = 1$ when w > 0. Similar (and easier) when $\alpha \leq d$.

Degrees: Proof Theorem 2

Crucially use that, for $\alpha > d$, as $a \to \infty$,

$$\sum_{y \neq 0} (1 - e^{-a/|y|^{\alpha}}) = v_{d,\alpha} a^{d/\alpha} (1 + o(1)).$$

Thus, when w > 1 is large, and with $\xi = v_{d,\alpha} \mathbb{E}[W^{d/\alpha}] < \infty$,

$$\mathbb{E}[D_0 \mid W_0 = w] = \sum_{y \neq 0} \left(1 - \mathbb{E}\left[e^{-wW_y/|y|^{\alpha}} \right] \right) \approx \xi w^{d/\alpha},$$

Conditionally on $W_0 = w$, D_0 is sum independent indicators, and thus highly concentrated when mean is large, i.e.,

$$\mathbb{P}(D_0 \ge s) \approx \mathbb{P}(W_0 \ge (s/\xi)^{\alpha/d}) \approx \ell(s)s^{-\alpha(\tau-1)/d} = \ell(s)s^{-\gamma}.$$

 $\gamma > 1$: finite-mean degrees; $\gamma > 2$: finite-variance degrees.

Percolation critical value

From now on, assume that long-range parameter $\alpha > d$ and powerlaw exponent $\gamma = \alpha(\tau - 1)/d > 1$.

Write $x \leftrightarrow y$ when there is path of occupied bonds connecting x and y. Let $C(x) = \{y \colon x \leftrightarrow y\}$ be cluster of x.

▷ Percolation probability: $\theta(\lambda) = \mathbb{P}(|\mathcal{C}(0)| = \infty)$. ▷ Critical percolation value: $\lambda_c = \inf\{\lambda : \theta(\lambda) > 0\}$.

Theorem 3 (Finiteness critical value). (a) $\lambda_c < \infty$ in $d \ge 2$ if $\mathbb{P}(W = 0) < 1$. (b) $\lambda_c < \infty$ in d = 1 if $\alpha \in (1, 2]$, $\mathbb{P}(W = 0) < 1$. (c) $\lambda_c = \infty$ in d = 1 if $\alpha > 2, \gamma = \alpha(\tau - 1)/d > 2$.

Positivity threshold

Theorem 4 (Positivity critical value). $\lambda_c > 0$ when $\gamma = \alpha(\tau - 1)/d > 2$.

Theorem 5 (Zero critical value). $\lambda_c = 0$ when $\gamma = \alpha(\tau - 1)/d \in (1, 2)$, i.e., $\theta(\lambda) > 0$ for every $\lambda > 0$.

Robustness of phase transition (Jacob, Mörters)

Identical to Norros-Reittu model, novel for percolation models:

Norros-Reittu model: $G = K_n$, $p_{ij} = 1 - e^{-\lambda W_i W_j/n}$. Giant component exists for every $\lambda > 0$ when variance degrees is infinite. NR-model: degrees have same number of moments as weights W.

Proof Theorem 4

We first assume that for $\mathbb{E}[W^2] < \infty$. When $|\mathcal{C}(0)| = \infty$, there exists paths of arbitrary length from origin:

$$\theta(\lambda) \leq \sum_{x_1, \dots, x_n} \mathbb{P}((x_{i-1}, x_i) \text{ occupied}) = \sum_{x_1, \dots, x_n} \mathbb{E}\Big[\prod_{i=1}^n p_{x_{i-1}, x_i}\Big],$$

where sum is over distinct vertices, with $x_0 = 0$. Bound

$$p_{x,y} = 1 - e^{-\lambda W_x W_y |x-y|^{-\alpha}} \le \lambda W_x W_y |x-y|^{-\alpha} :$$

$$\theta(\lambda) \leq \lambda^{n} \sum_{x_{1},...,x_{n}} \mathbb{E}\Big[\prod_{i=1}^{n} W_{x_{i-1}} W_{x_{i}} | x_{i-1} - x_{i} |^{-\alpha}\Big]$$

= $\lambda^{n} \sum_{x_{1},...,x_{n}} \mathbb{E}[W]^{2} \mathbb{E}[W^{2}]^{n-1} \prod_{i=1}^{n} |x_{i-1} - x_{i}|^{-\alpha} \leq \left(\lambda \mathbb{E}[W^{2}] \sum_{x \neq 0} |x|^{-\alpha}\right)^{n}.$

Proof Theorem 4

When $\mathbb{E}[W^2] = \infty$, instead use Cauchy-Schwarz and bound

$$p_{x,y} = 1 - e^{-\lambda W_x W_y |x-y|^{-\alpha}} \le \left(\lambda W_x W_y |x-y|^{-\alpha} \wedge 1\right):$$

$$\theta(\lambda) \leq \sum_{x_1,\dots,x_n} \mathbb{E} \left[\prod_{i=1}^n \left(\lambda W_{x_{i-1}} W_{x_i} | x_{i-1} - x_i |^{-\alpha} \wedge 1 \right) \right]$$
$$\leq \left(\sum_{x \neq 0} \mathbb{E} \left[\left(\lambda W_0 W_1 | x |^{-\alpha} \wedge 1 \right)^2 \right]^{1/2} \right)^n.$$

Key estimate: if $\mathbb{P}(W \ge w) \le cw^{-(\tau-1)}$ with $\tau \in (1,3)$, then

$$g(u) \equiv \mathbb{E}\left[\left(W_1 W_2 / u \wedge 1\right)^2\right] \le C(1 + \log u) u^{-(\tau - 1)}$$

 $\alpha(\tau-1)/2 > d$ when $\gamma = \alpha(\tau-1)/d > 2$, so above sum finite.

Proof Theorem 5

We use renormalization argument for $\gamma \in (1,2)$. Prove $\theta(\lambda) > 0$ for any $\lambda > 0$ small. Take r_{λ} large. By extreme value theory,

 $\max_{|x| < r_{\lambda}} W_x = \Theta_{\mathbb{P}}(r_{\lambda}^{d/(\tau-1)}).$

For $x \in \mathbb{Z}^d$, let $x(\lambda)$ be maximal weight vertex in $\{y : |y - r_\lambda x| \le r_\lambda\}$. Say (x, y) occupied when $(x(\lambda), y(\lambda))$ occupied.

For nearest-neighbor x, y, and with high probability,

 $\mathbb{P}((x,y) \text{ occ. } \mid (W_x)_{x \in \mathbb{Z}^d}) \approx 1 - e^{-\lambda W_{x(\lambda)} W_{y(\lambda)} r_{\lambda}^{-\alpha}} \approx 1 - e^{-\lambda r_{\lambda}^{2d/(\tau-1)-\alpha}}.$

Note $2d/(\tau - 1) - \alpha > 0$ precisely when $\gamma = \alpha(\tau - 1)/d < 2$.

Take r_{λ} so large that $\lambda r_{\lambda}^{2d/(\tau-1)-\alpha} \gg 1$. Then nearest-neighbor percolation model supercritical for small $\lambda > 0$. Implies that $\theta(\lambda) > 0$.

Distances

Theorem 6 (Loglog distances for infinite variance degrees). Fix $\lambda > 0$. For $\gamma \in (1, 2)$ and any $\eta > 0$,

$$\lim_{|x| \to \infty} \mathbb{P}\Big(d(0, x) \le (1 + \eta) \frac{2\log \log |x|}{|\log(\gamma - 1)|} \Big| 0 \longleftrightarrow x\Big) = 1.$$

and

$$\lim_{|x|\to\infty} \mathbb{P}\Big(d(0,x) \ge (1-\eta)\frac{2\log\log|x|}{|\log(\kappa)|}\Big) = 1,$$
 where $\kappa = (\gamma \wedge \alpha/d) - 1.$

Identical to distance results for Norros-Reittu model (Chung-Lu 06, Norros-Reittu 06).

Distances

Theorem 7. (Logarithmic bounds for finite variance degrees) Fix $\lambda > \lambda_c$. For $\gamma = \alpha(\tau - 1)/d > 2$, there exists an $\eta > 0$ such that

 $\lim_{|x|\to\infty}\mathbb{P}(d(0,x)\geq\eta\log|x|)=1.$

Phase transition for distances depending on whether degrees have finite or infinite variance.

Theorem 8 (Polynomial lower bound distances). Fix $\lambda > \lambda_c$. For $\gamma = \alpha(\tau - 1)/d > 2$ and $\alpha > 2d$, there exists $\varepsilon > 0$ such that

$$\lim_{|x|\to\infty} \mathbb{P}(d(0,x) \ge |x|^{\varepsilon}) = 1.$$

▷ Similar to long-range percolation (Biskup 04, Berger 04).

Further results

 \triangleright Diameter for $\alpha < d$ or $\gamma < 1$. Benjamini, Kesten, Peres and Schramm (04): For long-random percolation, diam(C_{∞}) = $\lceil d/(d - \alpha) \rceil$ a.s. Heydenreich, Hulshof, Jorritsma (16): diameter bounded.

▷ Random walk on scale-free percolation cluster: Heydenreich, Hulshof, Jorritsma (16): Transient when $\alpha \in (d, 2d)$ or $\gamma \in (1, 2)$. Recurrent when d = 2 and $\gamma > 2$ or $\tau > 2$.

Open problems

▷ Critical behavior: Continuity percolation function? Hazra+Wütrich (14): Yes, for $\alpha \in (d, 2d)$. What is upper-critical dimension?

Norros-Reittu model: Scaling limit same as for Erdős-Rényi random graph when $\gamma > 3$, different when $\gamma \in (2,3)$. (BvdHvL(09a,b)).

▷ Distances: What happens when $\alpha > 2d, \gamma > 2$? Precise behavior for $\alpha \in (d, 2d), \gamma > 2$? Polylogarithmic as for long-range percolation: Biskup (04): $(\log |x|)^{\Delta}$, where $\Delta = \log_2(2d/\alpha)$?

Hazra+Wütrich (14): Bounded below and above by $(\log |x|)^{\Delta}$ for different Δ .

Open problems

▷ Other spatial models: Deprez+Hazra+Wüthrich (15), Hirsch (14): Poisson version on \mathbb{R}^d . Results on torus?

Can one define a spatial preferential attachment model on \mathbb{Z}^d ? On torus: Work by Jordan (10), Flaxman, Frieze, Vera (06,07): Focus is on degree sequence. SPAM: Janssen, Pralat, Wilson (11): also geometry investigated. Jacob, Mörters (15): Robustness!

Spatial configuration model on \mathbb{Z}^d ? Deijfen and collaborators: matching problems and percolation.

Literature

[1] Berger. Transience, recurrence and critical behavior for long-range percolation. Preprint, arXiv:math/0409021v1, (2004).

[2] Berger. A lower bound for chemical distances in sparse long-range percolation models. *Comm. Math. Phys.* **226**, 531–558, (2002).

[3] Biskup. On the scaling of the chemical distance in long-range percolation models, *Ann. Probab.* **32**, 2933–2977, (2004).

[4] Deijfen, van der Hofstad and Hooghiemstra. Scale-free percolation. *AIHP* **49**(3), 817–838, (2013).

[5] Norros and Reittu. On a conditionally Poissonian graph process. *Adv. Appl. Probab.* **38**, 59–75, (2006).

[6] Deprez, Hazra and Wütrich. Inhomogeneous long-range percolation for real-life network modeling. Risks **3**: 1-23, (2015).

[7] Hazra and Wütrich. Continuity of the percolation probability & chemical distances in inhomogeneous long-range percolation. Preprint (2014).

[8] Hirsch. From heavy-tailed Boolean models to scale-free Gilbert graphs. Preprint (2014).

And now for something completely different...

Network Pages: interactive website by and for network afficionados...

www.networkpages.nl

We welcome contributions from everyone!